

Photoelasticity: Past, Present and Future Challenges

William Fraser¹ and Rachel Tomlinson²

Arkema UK Ltd¹, Wetherby School of Mechanical, Aerospace and Civil Engineering² The University of Sheffield

- Fundamentals of Photoelasticity
- Past History
- Present Technologies, Drawbacks and Solutions
- Future Challenges

Fundamentals

- Photoelasticity utilises an anisotropic optical property – birefringence.
- Birefringent materials possess two perpendicular refractive indices.
- 1. A single 'wave' of light passing through a birefringent material will 'split' into two components that travel through at different speeds.
- 2. Circularly polarised light will emerge elliptically polarised due to a shift in phase.

Fundamentals () | ON

Circular polariscope

2

3

Development of fringes upon increasing load

$\sigma_1 - \sigma_2$) = NF_{σ} \overline{d}

 $(\sigma_1 - \sigma_2)$ = principal stress difference (MPa) $N =$ Fringe order *=* Thickness (mm) F_{σ} = Material stress fringe value (N/mm/fringe)

Ordering of fringes to calculate principal stress difference

Reflection photoelastic stress analysis (RPSA)

RPSA is used to assist in a variety of design and manufacture processes.

This provides users with 'real' stress information allowing for:

• Information regarding maximum shear strains in complex geometries.

• Correction and validation of Finite Element Analysis (FEA).

• Instant identification of critical areas.

History – Transmission Photoelasticity

- 1816 Temporary Double Refraction observed by Sir David Brewster
- 1822 Fresnel confirmed by experiment Brewster's findings
- 1853 Maxwell publishes the Theory of photoelasticity
- 1931 "Treatise on Photoelasticity" by Coker and Filon
- 1940s Publications by Neumann; Frocht

Subsequent development of polariscopes, materials, methodologies, for static and dynamic applications

• 1990s Digital photoelasticity technological developments

Model of an aeroengine fir-tree root connecting blades and disc

Residual stresses in an uncut diamond

Residual stresses in glass products

History – Reflection photoelasticity (RPE) **Birefringent Coatings**

- 1930 Mesnager used glass fragments as photoelastic coating *Sensitive to changes however impact of reinforcement problematic*
- 1950 Availability of epoxy resins contributed to development of RPE
- 1960s Zandman developed a contourable photoelastic sheet which was applied on complex structures in industrial settings.
- 2000s Hubner developed an experimental luminescent PE coating based on UV curable materials. *Required conditions limited practical use*
- 2019 2023

Development of thin and efficient PE coatings for industrial applications

History – Reflection photoelasticity (RPE) **Acquisition and analysis**

Direct observations utilising polariscopes and manual manipulation of optics

1980 – 1990s:

- Hecker and Morche (1986) introduced phase stepping for automated photoelasticity
- Developments of phase stepping methodology,
	- e.g. six step phase stepping; Patterson and Wang (1991)

1997-2003:

- Developments of digital image acquisition and processing for RPE. Both static and dynamic capture.
	- 1997 advent of the grey field polariscope
	- 2002 advent of the poleidoscope for dynamic capture

Present - Technologies

Imaging and processing

Stress Photonics' polariscope and poleidoscope:

- Commercially available
- Ease of use
- Sub-fringe resolution of better than 0.1 nm
- 20 micro-strain resolution
- Automatic thickness correction*

*Tinted coating required

GFP1600: Grey field polariscope for static RPSA

Coating materials

Micro-measurements' photoelastic sheets:

- Flat sheets for basic geometries.
	- Range of thicknesses and sensitivities.
- Mouldable plastics for complex geometries.

$$
(\varepsilon_1 - \varepsilon_2) = \frac{\delta}{2dK} \int_{K}^{(\varepsilon_1 - \varepsilon_2) = \text{principal strain difference}}_{d = \text{Thickness}}
$$
\n
$$
K = \text{strain-optic coefficient}
$$

Video playback 32x speed: 30 minute coating preparation

24 hours cure

6 minute protective coating removal

Present - Drawbacks of RPSA

The photoelastic coating material

(UV curable)

Application concerns: Thickness control

We can't control; but...we can measure

- Use of a tinted coating.
- 1.5 wt% of a red epoxy dye.
	- Balance of cure performance, PE sensitivity and signal.
- A red coating will transmit red light whilst absorbing blue light.
- The ratio between captured red and blue light can be translated into a thickness measurement.

102 mm

Application concerns: Thickness control

25 mm

Calculated thickness: **0.046** ± **0.007 mm**

Measured thickness: **0.046** ± **0.004 mm**

Application concerns: Thickness control

Thickness correction on a Glass Laminate Aluminium Reinforced Epoxy (GLARE) sample – Load applied: 9 kN

38 mm Corrected

Present - An industrial focused application The identification of critical areas.

2 kN Load

Future of Reflection Photoelasticity

- Sprayable
- Formulation optimisation
	- LED curable for safe and easy application within industrial settings
	- Focused chemistry on PE sensitivity go thinner
- Ease of use with computional techniques e.g. FEA for validation.

Thank you for listening

Acknowledgements:

Airbus

Arkema

Geoff Calvert- VisEng Ltd

NPL