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The

Photoelasticity utilises an anisotropic
optical property — birefringence.

Birefringent materials possess two
perpendicular refractive indices.

A single ‘wave’ of light passing through
a birefringent material will ‘split” into
two components that travel through at
different speeds.

Circularly polarised light will emerge
elliptically polarised due to a shift in
phase.
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Ordering of fringes to calculate

Circular polariscope principal stress difference
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Image of an aircraft nose landing gear.

This provides users with ‘real’ stress information allowing for:

* Information regarding e Correction and validation e Instant identification of critical
maximum shear strains in of Finite Element Analysis areas.
complex geometries. (FEA).
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e 1816 Temporary Double Refraction observed by Sir David Brewster
e 1822 Fresnel confirmed by experiment Brewster’s findings

e 1853 Maxwell publishes the Theory of photoelasticity

e 1931 “Treatise on Photoelasticity” by Coker and Filon

e 1940s Publications by Neumann; Frocht

Subsequent development of polariscopes, materials, methodologies, for static
and dynamic applications

e 1990s Digital photoelasticity technological developments
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Model of an aeroengine fir-tree root connecting blades and disc



Residual stresses in an uncut diamond
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History — Reflection photoelasticity (RPE)

Birefringent Coatings

1930 Mesnager used glass fragments as photoelastic coating
Sensitive to changes however impact of reinforcement problematic
1950 Availability of epoxy resins contributed to development of RPE
1960s Zandman developed a contourable photoelastic sheet which was applied

on complex structures in industrial settings.

2000s Hubner developed an experimental luminescent PE coating
based on UV curable materials.
Required conditions limited practical use

2019 - 2023
Development of thin and efficient PE coatings for industrial applications
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History — Reflection photoelasticity (RPE)

Acquisition and analysis

Direct observations utilising polariscopes and manual manipulation of optics

1980 — 1990s:
 Hecker and Morche (1986) introduced phase stepping for
automated photoelasticity
* Developments of phase stepping methodology,
e.g. six step phase stepping; Patterson and Wang (1991)

1997-2003: l
 Developments of digital image acquisition and processing for RPE.
Both static and dynamic capture.
1997 advent of the grey field polariscope
e 2002 advent of the poleidoscope for dynamic capture
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Imaging and processing

Stress Photonics’ polariscope and poleidoscope:

Coating materials

Micro-measurements’ photoelastic sheets:
Flat sheets for basic geometries.

Mouldable plastics for complex geometries.
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Present - Technologies

Commercially available

Ease of use

Sub-fringe resolution of better than 0.1 nm

20 micro-strain resolution

Automatic thickness correction™® *Tinted coating required

GFP1600: Grey field polariscope for static RPSA

Video playback 32x speed:
30 minute coating preparation

* Range of thicknesses and sensitivities. 24 hours cure

6 minute protective coating

removal
(g, — &) = principal strain difference
5 6 = Retardation (nm)

d = Thickness

2 dK K = Strain-optic coefficient
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— T~ Complicated coating
¢ . application processes.
The
Three main % A e G ddilles photoelastic
: . = .
Issues exist ~ engineers. coating

material

- Large timescales for
- data collection.
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a potential
new coating
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Developing a new coating

Easy-to-apply
(sprayable)

Curablein a
matter of

seconds
(UV curable)




Application concerns:
Thickness control

We can’t control; but...we can measure

 Use of a tinted coating.

e 1.5 wt% of a red epoxy dye.
 Balance of cure performance, PE sensitivity
and signal.

* Ared coating will transmit red light whilst
absorbing blue light.

 The ratio between captured red and blue light
can be translated into a thickness measurement.

102 mm
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Application concerns:
Thickness control

Calculated thickness: 0.046 = 0.007 mm

Measured thickness: 0.046 = 0.004 mm

25 mm

17



Application concerns:
Thickness control

Thickness correction on a Glass Laminate Aluminium Reinforced Epoxy
(GLARE) sample — Load applied: 9 kN

+7,000
+5,563
+6,125
+5,688
+5,250
+4,813
+4,375
+3,938
+3,500
+3,063
+2,625
+2,188
+1,750
+1,313
+875

+438

+0
p straim

38 mm Corrected




RPSA

2 kN Load

Present - An industrial focused application
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e Sprayable
e Formulation optimisation

e LED curable for safe and easy application within industrial settings

e Focused chemistry on PE sensitivity — go thinner

e Ease of use with computional techniques e.g. FEA for validation.
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Thank you for listening
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