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Outline

* Introduce thermoelastic stress
analysis (TSA) - briefly

e Combining TSA with DIC

e Application to FRP materials

e Qutcome of previous work

e TSA with realistic MD CFRP materials
e Application to structural scale

* Low cost cameras
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Assumes no heat
transfer

Temperature change
occurs adiabatically

Cyclic loading reduces
diffusion
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Triggering image capture avoids interrupting the
cyclic loading

BUT Precise camera triggering required.

Use the TSA lock-in processing to remove the need
for triggering — notch filters DIC strains same as
TSA
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Typical composite laminate
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CFRP 0.0155 0.1186
pC.aT " A4

Thermal conductivity, k, high

AT is the same in +45 and -45 ply —

: ) " Laminate is homogenised value
adiabatic conditions

Is AT occurring adiabatically — conduct tests at
Thick surface resin — strain witness different loading frequencies
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Non-adiabatic behaviour in CFRP at low frequency
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Findings from previous work

 Thermoelastic response from FRP materials is dependent on manufacturing
approach V;and resin rich surface layer

e Stress induced temperature change similar ply-by-ply for GFRP — little heat
transfer — response from resin rich layer — strain witness

* For CFRP at low loading frequencies (< 15 Hz) heat transfer taking place in
‘cross ply laminates’

e Recommendation carry out calibration programme to help interpret results
from structural specimens

e Opportunity CFRP tune loading frequency to observe subsurface behaviour
e Further investigation required CFRP laminates with off axis (45°) plies
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Off axis plies

Tensile Load (kN)

[0,45,-45,0,0,0]

[0,0,0,45,-45,0]

=

g University of
Research Council g BRISTOL




T T T T T T T T T
B n n |%
rlg g 19
) IS
A FIL
s e
S -
s 2 P~
rle = 19 mT
rﬁ\u
e L
3 .NN
i 12 > &
g DA
|
1 =) [
e L
- 41 9o L
— -
T
- 1w
¥
o
—
Xk L 1 1 1 1 1 o
~ — o
© © < ~ @ © < ]
i i — — S o (<) s}

Engineering and
Physical Sciences
Research Council

5.1Hz 6.1Hz 7.1Hz 8.1Hz 9.1Hz 10.1Hz 12.1Hz 15.1Hz 17.1Hz 20.1Hz 22.1Hz 25.1Hz 27.1Hz 30.1Hz

3.1Hz 4.1Hz

IO]S

-45

2.1Hz
)

1.1Hz
,45

0

?

(7))
9
o
(@
LN
<
(.

O
o

&)

Q
S
(.
LLl

[0,0

0.5Hz




Wong A. A non-adiabatic thermoelastic theory for composite laminates.
Journal of Physics and Chemistry of Solids. 31 December 1991; 52: 483-494.

[1] (2] (3] [4] (5] [7] (8]
Young'’s modulus E, (GPa) 1488 1714 161.0 164.0 161.0 161.0 165.0
Young’s modulus E, (GPa) 9.19 9.08 11.38 1200 1138 11.38 9S5.00
Poisson’s ratio vy, 034 032 032 030 032 0.32 034
Bending stiffness G;, (GPa) 506 530 5.17 500 5.20 5.17 5.60
Thermal expansion coeff. a; (10€K1) -0.3 -5.5 -0.1 -0.1 -0.9 0 -1.0
Thermal expansion coeff. a, (10€K?!) 284 255 31 124 28.8 30 18
8552 Resin Reference [1] 8] [18]
Young’s modulus E;; (GPa) 3.8 4.08 X
Poisson’s ratio v, 0.35 0.38 X
Bending stiffness G, (GPa) 1.41 1.48 X
Density p, (kg m3) 1153 X 1301
i RIEH L3 Specific heat ca[:-)acity Cp, () kgt K1) 1100 X 1350
Thermal expansion coeff. o, (10°K?)  53.5 467 48.0
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Can TSA be used to assess CFRP components? ..;jm | 7=

 Demonstrated the thermoelastic response is highly dependent on lay-up
* Need to assess factors such as resin-rich layer

e Paint coating also has an effect (need to speckle to use DIC)

* Only considered 1D thermal conduction through thickness

* In-plane conduction e.g. around damage - modification of stress field
changes heat transfer characteristics locally

e Need for a model that considers 3D heat diffusion

e Fusing data with DIC can be used to:
e |dentify sub surface damage in situ in CFRP composites
e |dentify difficult to measure quantities such as the CTEs of CFRP composites
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Opportunity for large scale tests on GFRP.@R@., %

Cross-section of WTB

e GFRP —response from resin
rich layer

e Adiabatic even at low
frequencies

e Can TSA help determine
failure mode in conjunction
with DIC

e Can a large specimen be
loaded realistically?
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Wind turbine blade substructure loading fjs. 12075
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Far side Near side
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Composite specimen before initial failure 41]\/(11.. Yy livis
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Forensic failure analysis - WIP

Undamaged speumen
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Low-cost TSA and Brazilian Disc
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Assessment of Microbolometer Infrared Cameras for

< '~ Thermoelastic Stress Analysis
£ -+ |.Jiménez-Fortunato, C. Devivier, J.M. Dulieu-Barton
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It all started with SPATE ~4iﬂvﬁ$~ ‘ S8
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Thank you for listening






