Thermoelastic stress analysis of composite materials and structures: progress and prospects

ANNIVERSAR

FOR STRAIN MEASUREMENT

Engineering and Physical Sciences Research Council

6th November 2024 BSSM 60th Anniversary Showcase Airbus Filton

Rafa Ruiz-Iglesias, Irene Jimenez Fortunato, Tobias Laux, Riccardo Cappello, Ole Thomsen

Janice Dulieu-Barton

Structures

Bristol Composites Institute

University of

Outline

- Introduce thermoelastic stress analysis (TSA) - briefly
- Combining TSA with DIC
- Application to FRP materials
- Outcome of previous work
- TSA with realistic MD CFRP materials
- Application to structural scale
- Low cost cameras

Thermoelastic stress analysis (TSA)

$$\Delta T = -\frac{1}{\rho C_p} T_0(\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2) \qquad T(x, y, t) = T_0 + 0.5 \Delta T(x, y) \cos(2\pi f_0 t + \phi)$$

Combining TSA and DIC during cyclic loading

- BUT Precise camera triggering required.
- Use the TSA lock-in processing to remove the need for triggering – notch filters DIC strains same as TSA

The use of a lock-in amplifier to apply digital image correlation to cyclically loaded components

R.K. Fruehmann^a, J.M. Dulieu-Barton^{a,*}, S. Quinn^a, J.P. Tyler^b

^a University of Southampton, Faculty of Engineering and the Environment, SO17 1BJ, United Kingdom ^b Enabling Process Technologies Ltd., Bristol BS20 8ET, United Kingdom

 \succ

Typical composite laminate

Simultaneous use of fullfield imaging techniques Thermoelastic Stress Analysis (TSA) – measured $\frac{\Delta T}{T_0}$ Digital Image Correlation (DIC) – independent calculation of $\frac{\Delta T}{T_0}$ from measured strains –using measured material properties

Specimens made from GFRP and CFRP

Heat transfer in each specimen type

ΔT calculated from material properties for a constant strain

Δ <i>Τ</i> (K)	0	90	45/-45	resin	laminate
GFRP	0.1028	0.1014	0.0758	0.1180	0.1029
CFRP	0.0155	0.1186	0.0178	0.1438	0.0676

$$\dot{T} = \frac{T_0}{\rho C_{\varepsilon}} \frac{\partial \sigma_{ij}}{\partial T} \dot{\varepsilon}_{ij} - \frac{\dot{Q}}{\rho C_{\varepsilon}}$$

Thermal conductivity, k, is low

Little change in ΔT between plies

Adiabatic conditions

 ΔT is the same in +45 and -45 ply – adiabatic conditions

Thick surface resin – strain witness

Thermal conductivity, k, high

Step changes in ΔT at ply interfaces

Non adiabatic behaviour at low frequencies

Laminate is homogenised value

Is ΔT occurring adiabatically – conduct tests at different loading frequencies

Non-adiabatic behaviour in CFRP at low frequency

Findings from previous work

- Thermoelastic response from FRP materials is dependent on manufacturing approach V_f and resin rich surface layer
- Stress induced temperature change similar ply-by-ply for GFRP little heat transfer – response from resin rich layer – strain witness
- For CFRP at low loading frequencies (< 15 Hz) heat transfer taking place in 'cross ply laminates'
- Recommendation carry out calibration programme to help interpret results from structural specimens
- Opportunity CFRP tune loading frequency to observe subsurface behaviour
- Further investigation required CFRP laminates with off axis (45°) plies

Off axis plies

[0,0,0,45,-45,0]_S

R

Effect of 45° plies

Making a model of heat transfer

[5] [8]

[2]

[3] [7]

[4]

30

×10⁻⁴ Wong A. A non-adiabatic thermoelastic theory for composite laminates. [0,0,0,45,-45,0] 3.5 Journal of Physics and Chemistry of Solids. 31 December 1991; 52: 483–494. 3 2.5 T/T₀ (К/К) Reference [1] [2] [3] [5] [6] [7] [8] % Variation [4] Young's modulus E1 (GPa) 171.4 161.0 161.0 158.5 161.0 165.0 22.26 2 148.8 164.0 Young's modulus E₂ (GPa) 15.29 \triangleleft 9.19 9.08 11.38 12.00 11.38 8.96 11.38 9.00 Poisson's ratio v_{12} 0.04 0.34 0.32 0.32 0.30 0.32 0.32 0.32 0.34 Bending stiffness G₁₂ (GPa) 4.69 5.60 5.06 5.30 5.17 5.00 5.20 5.17 1.14 0.5 Thermal expansion coeff. α_1 (10⁻⁶ K⁻¹) -0.3 -5.5 -0.1 -0.9 -0.17 -1.0 298.12 -0.1 0 Thermal expansion coeff. α_2 (10⁻⁶ K⁻¹) 28.4 25.5 31 12.4 28.8 36.5 18 196.20 30 0 10 15 20 25 2.5 ×10⁻⁴ k = 0.58 W/m·K k = 0.7970 W/m·K k = 0.8412 W/m·K k = 0.8550 W/m·K k = 1.1738 W/m·K 8552 Resin Reference [19] CV (%) [1] [4] [7] [8] [18] т/т₀ (К/К) Young's modulus E_{1r} (GPa) Х 12.45 3.8 5 4.67 4.08 Х 8.52 Poisson's ratio v_r 0.38 Х 0.35 0.40 0.33 Bending stiffness G_r (GPa) Х 3.43 \triangleleft 1.41 1.48 Х Density pr (kg m⁻³) 1153 1301 1300 6.81 Specific heat capacity Cp_r (J kg⁻¹ K⁻¹) 14.69 1100 1350 1025 0.5 Thermal expansion coeff. α_r (10⁻⁶ K⁻¹) 53.5 60 65 46.7 48.0 Х 14.31 10 20 0 15 25 5

30

Freq (Hz)

Can TSA be used to assess CFRP components?

- Need to assess factors such as resin-rich layer
- Paint coating also has an effect (need to speckle to use DIC)
- Only considered 1D thermal conduction through thickness
- In-plane conduction e.g. around damage modification of stress field changes heat transfer characteristics locally
- Need for a model that considers 3D heat diffusion
- Fusing data with DIC can be used to:
 - Identify sub surface damage in situ in CFRP composites
 - Identify difficult to measure quantities such as the CTEs of CFRP composites

Opportunity for large scale tests on GFRP (

- GFRP response from resin rich layer
- Adiabatic even at low frequencies
- Can TSA help determine failure mode in conjunction with DIC
- Can a large specimen be loaded realistically?

Wind turbine blade substructure loading

Structures

Imaging set-up composite T-joint

Bristol

Composites

Institute

Composite specimen before initial failure

Forensic failure analysis - WIP

Δ*T* [*K*]

0.035 0.03 0.025 0.02 0.015 0.01 0.005 0

Undamaged specimen

Reduction of thermoelastic signal on ply drop

Increase of thermoelastic signal in the web, indicating stress redistribution

Low-cost TSA and Brazilian Disc

It all started with SPATE

Thank you for listening

