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Abstract 

We recently proposed an approach for Efficient Unsupervised Constitutive Law Identification and Discovery 

(EUCLID), which exploits machine learning tools such as sparse regression [1–4], Bayesian learning [5], or 

neural networks [6] to automatically discover material laws independent of stress data, but solely based on 

full-field displacement and global force data obtained from mechanical testing. The displacement field can be 

measured on the surface of a target specimen via digital image correlation (DIC). 

An important feature of the approach is that, in principle, the discovery of the material law can be performed 

in a one-shot fashion, i.e., using only one experiment. However, this capability heavily relies upon the richness 

of the measured displacement data, i.e., their ability to probe the stress-strain space (where the stresses 

depend on the constitutive law being sought) to an extent sufficient for an accurate and robust discovery 

process. The richness of the displacement data and the robustness of the discovery process are in turn 

governed by the specimen geometry. 

In the present study, we aim to optimally design the geometry of the target specimen via density-based 

topology optimisation approach. In this fashion, we perform automatic specimen design by maximising the 

robustness of the solution, i.e., the identified material parameters, given noisy displacement measurements 

from DIC. In this contribution, we shed light on the objective function, the topology optimisation framework, 

and a range of optimised topologies for orthotropic elasticity (see Fig. 1). 
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Fig. 1. Optimised topologies for different input orthotropic materials. Here, 𝛽 is the anisotropy orientation,  
𝛼1  = 𝐸𝑥𝑥/𝐸𝑦𝑦 is the fibre-to-transverse Young’s moduli ratio, and, 𝛼2 = 𝐺𝑥𝑦/𝐺𝑥𝑦

𝑠𝑣  is the ratio of the shear modulus to 

the Saint-Venant’s approximation 1 𝐺𝑥𝑦
𝑠𝑣⁄ = 1 𝐸𝑥𝑥⁄ + 1 𝐸𝑦𝑦⁄ + 2𝜈𝑥𝑦 𝐸𝑥𝑥⁄ . 
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