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Abstract. Qualifying components for service inside the extreme environment of a fusion reactor is a significant 
engineering challenge. It is possible for us to test large scale components under combined mechanical, thermal 
and electromagnetic loads, but it will not be possible for us to include fusion spectrum neutron irradiation. This 
means that our initial component lifetime predictions will be made with simulations. Therefore, our simulations 
will require experimental validation over the testable mechanical, thermal and electromagnetic domains to 
reduce uncertainty when extrapolating into irradiated conditions. Large-scale experiments for simulation 
validation are expensive in terms of the time and resources required so optimising the information gained from 
these experiments has the potential for significant efficiency gain. In this work we discuss the development of 
a software toolbox called pyvale (the python validation engine). This toolbox is for simulating sensors (e.g. 
thermocouples, strain gauges, infra-red thermography and digital image correlation systems) and optimising 
engineering experiments. We then discuss the future application of this toolbox on supercomputing clusters to 
run large parallel sweeps of experimental parameters to quantify uncertainties and optimise information gained 
from fusion component validation experiments. 

Possible Sessions 

18. Nuclear Applications: Fusion, 14. Model Validation 

Introduction & Motivation 

Fusion is an attractive source of clean energy but there are significant engineering challenges that must be 
overcome to make sustainable fusion power a reality. One of these challenges is assessing component 
structural integrity under combined thermal and electromagnetic loads with neutron irradiation damage. While 
it is possible for us to experimentally test components under mechanical, thermal and electromagnetic loads 
before service in a fusion reactor, it will not be possible for us to test large components under fusion spectrum 
neutron irradiation. For this reason, we will require simulations to qualify components prior to service inside a 
reactor. Furthermore, our simulations will need to be validated over as much as the operational domain as 
possible to minimise uncertainty when making predictions under fusion neutron irradiation. Given the cost in 
time and resources required to undertake large component qualification experiments optimising the information 
gained from an experiment has the potential for significant savings.  

While it is not possible to perform thousands to millions of meter scale component experiments it is possible 
to perform this many simulations on the latest generation of supercomputing clusters that have thousands to 
tens of thousands of chips with hundreds of thousands of cores. To bridge this gap between experiments and 
simulations we are building a software engine that can generate realistic sensor data (with uncertainties) from 
a physics simulation. Here we take inspiration from the digital image correlation community who have 
developed and used synthetic image deformation as a method for assessing uncertainty (systematic and 
random) for image-based deformation measurements [1,2]. We extend this idea to the simulation of a wide 
array of thermal and mechanical sensors such as thermo-couples, strain gauges, pyrometers, infra-red 
thermography, and digital image correlation systems. We also specify an abstract interface allowing users to 
define their own sensors and associated uncertainty models with the idea that the platform could be extended 
to include thermal-hydraulic measurement systems or neutronics sensors in the future. 

The software engine we are developing for creating synthetic experimental data from simulations has a 
wide variety of applications, including: 1) uncertainty quantification for a given array of sensors, 2) experiment 
and sensor placement optimisation; 3) providing ground-truth data for benchmarking and developing validation 
metrics, 4) providing a mechanism for generating large simulated experimental datasets to train machine 
learning algorithms; and 5) testing the predictive capability of digital shadows/twins. In this work we discuss 
current progress on pyvale (python validation engine) and show a minimal working demonstration applying 
simulated thermocouples to a thermal simulation of a fusion heatsink component. 

The pyvale Sensor Model 

We based the pyvale sensor model on a collection of sensors of the same type called a SensorArray as 

vectorised operations reduce computation time, and it will make it easier to implement camera sensors in the 

future. A pyvale SensorArray is an abstract base class that implements the following relationship: measurement 

= truth + systematic error + random error. The first implementation of a SensorArray in pyvale is a 

ThermocoupleArray. In general, the truth is taken directly from the simulation by using the element shape 

functions for spatial interpolation and linearly interpolating between simulation time steps to match the user-



 

defined sensor sampling frequency. The default systematic error function is randomly sampled from a uniform 

probability distribution where the user specifies the upper and lower bounds. This systematic error function is 

sampled once and creates an offset for the duration of the simulated sensor trace. The default random error 

function is a normal probability distribution where the user specifies the standard deviation. The random error 

function is sampled for every measurement. We also note that the current sensor interface allows users to 

specify custom systematic and random error functions by passing a callable python object or ‘None’ which 

removes the calculation of either error. To create a ThermocoupleArray the user specifies a list of locations 

and an optional set of time steps to take measurements. If no time steps are specified, then the sensor output 

frequency is assumed to match the simulation timestep. We have made pyvale open-source and the code is 

available on GitHub: https://github.com/Applied-Materials-Technology/pyvale. 

Prototype Demonstration of pyvale on a Fusion Component Simulation 

Here we use the thermal simulation of a divertor armour heatsink that is a multi-material system consisting of 
an external tungsten armour block with a copper-chromium-zirconium pipe and pure copper interlayer. The top 
of the tungsten block is subjected to a spatially uniform time varying heat flux with a steady-state peak of 10 
MW.m-2. The internal surface of the pipe is cooled with water that is assumed to have a heat transfer coefficient 
based on the Sieder-Tate relationship. The model is solved using the Multi-Physics Object Oriented Simulation 
Environment (MOOSE) [3]. The full input script for the model can be found in the GitHub repository.  

The simulation output is then used with pyvale to create simulated thermocouple traces. Here we simulate 
four thermocouples equally spaced on the side of the component with a sampling frequency of 2 Hz. A 
visualisation of the thermocouple locations is shown in Fig. 1. For this case we have assumed the bounds of 
the uniform systematic error function are [-10,10] K and the standard deviation of the random error function is 
10 K. Note that these values are exaggerated compared to true thermocouple uncertainties for testing.  
 

 

Figure 1: (a) Visualisation of the simulation temperature field for the heatsink component at t=30s showing the locations 

of the thermocouples (denoted TC). (b) Simulated temperature traces for the thermocouple locations, the solid lines show 
the simulation output and the markers and dashed lines show the thermocouple traces.  

Conclusion & Future Work 

In this work we have developed the first prototype of an experiment and sensor simulation engine called pyvale 
using the example of thermocouples applied to a fusion heatsink component under thermal loading. Our 
motivation for developing pyvale is to provide us a set of tools that will allow us to design and optimise validation 
experiments using large parallel simulation sweeps on supercomputing clusters. For future work we will 
implement a wider range of thermal and mechanical sensor models with increased fidelity of systematic and 
random error functions. A key focus will be to allow users to build their own custom systematic error function 
from a library of common sources of error such as spatial/temporal averaging, digitisation error, calibration 
error and positioning error. We are also developing additional modules for pyvale that will connect the data 
generated by our sensor models to sensor placement optimisation algorithms, validation metric calculations, 
and finite element updating procedures for model calibration. At the conference we will demonstrate the latest 
version of pyvale including an application on the CSD3 cluster at Cambridge. 
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